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Algebraic properties of the Dirac oscillator 

0 L de Lange 
Physics Department, University o f  Natal, PO Ban 375, Pietermantrburg 3200, South Africa 

Received 30 August 1990 

Abstract. An algebraic (representation-independenl) analysis is presented for the Dirac 
oscillator in an angular momentum basis. The analysis is based on shift operators far 
energy and angular momentum, and it is similar to that for a non-relativistic isotropic 
harmonic oscillator. The shift operators generate all the eigenkets of the Dirac oscillator 
from a ‘vacuum‘ ket. The shift operations yield energy eigenvalues and certain malrix 
elements. The relationshil, to the factorization method is discussed. 

1. Introduction 

Recently there has been considerable interest in the properties and applications of the 
Dirac oscillator [1-5]. This oscillator is described by a Dirac equation in which the 
interaction of a particle of rest mass m, with an  external potential is introduced by 
the (non-minimal) substitution 

p + p - im,,wpr (1.1) 
where w is a constant and p is a Dirac matrix [1,6]. The energy spectrum for the 
Dirac oscillator can be determined analytically [ 7 ]  and the degeneracies have been 
discussed in terms of a hidden supersymmetry [3,8,9]. 

It is known that in certain aspects the Dirac oscillator is related to an isotropic 
three-dimensional non-relativistic harmonic oscillator (hereafter referred to as an 
ordinary oscillator). For example, in the non-relativistic limit the equation satisfied by 
the large components of the wavefunction for the Dirac oscillator corresponds to the 
wave equation of an ordinary oscillator with spin-orbit coupling [l]. Quesne and 
Moshinsky [4] have used this property to determine the symmetry Lie algebra of the 
Dirac oscillator. In their work the generators of the symmetry algebra are constructed 
using properties of the non-relativistic coordinate-space wavefunctions. 

The purpose of this paper is threefold. Firstly we show that the Dirac oscillator 
can be treated by a purely algebraic method, that is without choosing any representation 
space. This algebraic analysis is based on abstract shift operators that generate all the 
eigenkets of the oscillator from a given eigenket (such as the ‘vacuum’ IO)). Secondly 
we show that the analysis can be performed from first principles in a simple manner 
which is similar to that for an ordinary oscillator in an angular momentum basis 
[lo, I l l .  Thirdly we discuss the properties of the above shift operators. 

In section 2 we discuss commuting operators for the Dirac oscillator and in section 
3 we obtain shift operators for the eigenvalues of these commuting operators. Algebraic 
properties of the shift operators and the relationship to the factorization method are 
considered in section 4. In  section 5 matrix elements, phase factors, and wavefunctions 
are discussed. 
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The Dirac oscillator is one of the few relativistic spherically symmetric problems 
for which such a complete algebraic treatment is possiblet. In  addition to their intrinsic 
interest the results presented here could be applied, for example, in the construction 
of coherent angular momentum states$. 

2. Commuting operators for the Dirac oscillator 

The equation for the Dirac oscillator is (we set h = c = 1) 

d HI") = -i - llu) (2.1) 
at  

where 

H = a . ( p  -im,opr) + mop. (2.2) 

For the Dirac matrices we choose 

and 

B = ( '  0 -1  O )  

(2.3) 

where ur are the Pauli spin matrices. For the total, orbital, and spin angular momentum 
operators we adopt the usual notation 

J = L + S  (2 .5 )  

L = r x p  (2.6) 

S='Z 2 (2.7) 

where 

x = ( u  O u  0). 

It is straightforward to show that H, J 2 ,  J: ,  S2,  and 

K = P ( Z . L + l )  (2.9) 

are a set of commuting operators. We consider simultaneous eigenkets of these operators 
and write 

HI*)= E(V)  (2.10) 

J'llu) = j ( j +  l)llu) (2.11) 

.W)= m l W  (2.12) 

5 2 1  V) = $1 lu) (2.13) 

KIT)= kllu). (2.14) 

Here m = -j, - j +  I , .  . . , j and the values of E, j ,  and k are to be determined. 

t The Dirac-Coulomb problem can also be treated in this manner, although the analysis is  complicated bee  

'$Coherent angular momentum states of the ordinary oscillator have been studied by Bracken and L e m o n  
[121). 

[W.  
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For our purposes it is helpful to express the eigenvalue equations in 2 x 2  block 
form. Thus we write 

Then (2.1) yields the coupled equations 

(u.p-im"wu.r)I$) = (E+m,)lx) 

( u . p  + im,wu. r)lx) = ( E  - mu)l$). 

Decoupling these equations we obtain 

and 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

where 

1 

2 m, 
2 = -p2+fm,02r' (2.20) 

and 

Equations (2.14), (2.15), (2.9), and (2.4) show that 

xl@)=kl4) (2.22) 

Xlx) = -klx). (2.23) 

From ( i . i i j  and [2 . i j j ,  14) an; ix) aie eigeiikets o f j 2  where 

j = L+fa. (2.24) 

The corresponding eigenvalues are j ( j +  1). This result and (2.22) shows that 14) is an 
eigenket of L2 with eigenvalues /(/+ l) ,  and thus the theory of combination of two 
angular momenta requires 

j - l * + .  (2.25) 

Similarly, Ix) is an eigenket of Lz with eigenvalues I , ( / ' +  I ) ,  where / ' = I *  1 f o r i =  I * ; ,  
Hence the Dirac quantum number in (2.22) and (2.23) has the values 

k = -?( j + f )  (2.26) 

where 

1) ~ (-1)i+f+ll2 (2.27) 

The Hamiltonian (2.2) commutes with the parity operator and (2.15) is an eigenket of 
parity with eigenvalue (-1)'. 
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We can summarize the eigenvalue equations for I+) and Ix) in the convenient form 

(2.28) X in jmq)  = w (  n + 1 + 8) lnjmq) 

(2.29) 

(2.30) 

q = I - v .  

The dimensionless parameter n is defined as 

(2.32) 

(2.33) 

n =(2m,o ) - ' (E2 -  m ; ) + k - 1 .  (2.34) 

From (2.34) and (2.26) the positive and negative energies are given in terms of n and 
j by 

E,  = ztm0{1+2wm;' [n + 1 + ~ ( j + ~ ) ] } ' " .  (2.35) 

The operators X, j 2 ,  jz, and L2 are a set of commuting operators for the elements 
14) and Ix) of the Dirac oscillator (see section 5 ) .  In the next section we determine 
shift operators for the quantum numbers n, j ,  m, and q. In these calculations we need 
the normalization conditions for 14) and 1 ~ ) .  The normalization (YlY)= 1 of the Dirac 
ket (2.15) requires 

(414)+(xlx)= 1. (2.36) 

Multiplying (2.16) and (2.17) on the left by ( X I  and (@I, respectively, and using the 
Hermitian properties of r, p, and U, we have 

( E + m & x I x ) = ( E  -mo)(+l+). (2.37) 

From (2.36) and (2.37) we see that the normalization conditions for 14) and Ix) are 

(2.38) 

(2.39) 

In the non-relativistic limit the norm of Ix) (I+)) is small for positive (negative) energy 
solutions. 
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3. Shift operators 

The operator 2 in (2.28) is the same as the Hamiltonian for an ordinary oscillator. 
Thus to construct shift operators for the eigenkets Injmq) we use the same procedure 
as for the ordinary oscillator in an angular momentum basis. Following [ lo]  and [ l l ]  
we adopt the ansatz 

D ( o )  = a 'xL+ia 'Y (3.1) 

where 

a + =  (2m,lwl)-"'(-ip+m,or) 

is the boson creation operator and 9 is to be determined, 
If 

[X, Y ]  = 0 

then 

[X, D ( w ) ]  = w D ( w ) .  

(3.3) 

(3.4) 

If 

[ L2, 91 = 0 (3.5) 

and 

Y2+9- L* = o  (3.6) 

then 

[L2, D(w)]=-2D(w).Y (3.7) 

9 = o . L  (3.8) 

The solution 

to (3.6) satisfies (3.3) and (3.5). 
In the rest of this paper we suppose that 9 is given by (3.8); thus 

D ( o )  = a T x  L + i a ' ( a . L ) .  (3.9) 

Then 

D ( - o ) = - a x L - i a ( u . L )  (3.10) 

where 

a = (2molol)-"*(ip+ m o w )  (3.11) 

Because j commutes with (3.8) we see that D ( w )  is a vector operator with respect 

[ i ,  D,(w) l=i&, ,A(w) .  (3.12) 

is the boson annihilation operator. 

to j 

It is also straightforward to show that 

[X, D ( o ) ] = - D ( w ) .  (3.13) 
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From the commutators (3.41, (3.71, (3.121, (3.13) and (2.22), (2.23), (2.26)-(2.31) 
we obtain the twelve shift operations 

and 

Here ,A = 0  or *1 and 

Do = 0, D,  I = 0, * io,. (3.16) 

The coefficients a: and p: are calculated below. The energy-dependent factors in 
(3.14) and (3.15) have been included to take account of the normalization conditions 
(2.38) and (2.39); in these factors E,, is given by (2.35) and (3.33). The subscripts U 
and L in (3.14) and (3.15) indicate whether Injmq) is the upper or lower ket (14) or 
I x ) )  in (2.15). 

Using (3.141, (3.15), and the orthogonality of the kets we obtain an additional 
twelve shift operations 

D:(*o)lnjmq), 

x [ a ' , ( n r  1.j- o. m + ~ l ) l * l n r l , j - v ,  m+p, q - o h  (3.17) 

and 

D:(*w)lnjmq)L 

= ( -l;oy"l )'I* 

" = l , , + l  

x [ 8 ? , ( n  1,j+ o. m + ~ ) l * b  I,j+ o. m+P, q + v L .  (3.18) 

Here 

D:=D: D:, = D:*iD:. (3.19) 

Explicit expressions for Di are given below (see section 4). 
Next we determine the coefficients a: and p :  in the above shift operations. To 

calculate the magnitudes of these coefficients we use the identities (4.1), (4.111, (4.13), 
and (4.15). Then 

[D,(*o)]'D,(io) = (Zm,w)-'R'(*o)[(u x L ) * ] ' ( u  x L),R(I .w)  (3.20) 

because (u. i ) '= 1. Substituting (4.18) and (4.19) in (3.20) and noting that the scalar 

[ D o ( * o ) l t D , ( * o ) = ( w - ' X * ~ 3  ~ . L ) ( L ' - j i + i )  (3.21) 

operaton R ( * w )  iommi;:e wkh :he :igh:-haod .idCS of ($!E) aod (4.E) we have 

and 

.[D,(*o)]'D,(*o) = (o-'X*tF u.L)[(u.L-,A~:)~-~] (3.22) 
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where p =*l. The expectation values of the right-hand sides of (3.21) and (3.22) can 
be written down using the eigenvalue equations (2.22), (2.23), and (2.28)-(2.31). Thus 
we obtain 

a:(njm) = e:(. * Tj*+q*$+$)y,,(jmv) (3.23) 

P : ( n j m ) = 4 ; ( n F T j F f 7 * ~ + f ) y , ( j ,  m, -7) (3.24) 

where 0: and 4; are phase factors (see section 5 )  and 

(3.25) 

(3.26) 

The above shift operations change both the energy and the angular momentum. It 
is also useful to construct shift operators that change only the energy; according to 
(3.14), (3.15), (3.17), and (3.18) these are given by 

[D,(Fw)liD,(*w) (p=O,* l ) .  

Using the factorizations (4.1). (4.1 l),  (4.18), and (4.19) it is straightforward to show that 

[Du(Fw)]tDo(*w) = Q*(L2 - .?: + a )  (3.27) 

[D,(Fw)]'D,(*w) = Q ' [ ( u . L F ~ , ) ~ - ~ ]  ( p = * 1 )  (3.28) 

where 

Q'=*ir.p- mowr2+w-'%*$ (3.29) 

=kip. r +  (m, ,w) - ' p ' -o - '%~$ .  (3.30) 

Using (3.27), (2.30), (2.31) and the shift operations involving Do(*@) and DA(*w) 
we find 

and 

x [ ( n  - v j - f T + l *  l ) ( n +  v j + t ~ + i ) ] " ~ l n * 2 .  j, m, q L .  (3.32) 

In (3.31) and (3.32) we have set the phase factors equal to 7 (see [ 5 ]  and section 5 ) .  
Non-negativity of the norm in (3.31) and (3.32) requires that the lowering operations 

must terminate at a minimum value n ' = j + f v ,  except that for j = / + &  n ' = j + $  in 
Injmq),. The raising operations in (3.31) and (3.32) do not terminate, and if ln'jmq) 
is normalizable then so are the kets with 

n = 2 N + j + f ?  (3.33) 

N=O,1 ,2 , .  . . . (3.34) 

where 

For j = l + $ ,  Injmq)L does not exist if N = O  (that is, n = j - f ) .  Equations (2.35) and 
(3.33) yield the well known energy eigenvalues of the Dirac oscillator [ l ,  3,7]. 
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From a normalized ket lnjmq), (or 1njmq)J the shift operators presented above 
and the coupled equations (2.16) and (2.17) will generate all the kets of the Dirac 
oscillator. The above analysis for the Dirac oscillator is simpler than that for the 
ordinary oscillator [IO, 111. This is due to use of the operator (3.8) instead of the 
number operator (L’+;)’’’ that occurs in the non-relativistic problem [lo, 111. This 
situation is reminiscent of the fact that it is easier to treat the Coulomb problem for 
a Pauli particle than it is for a non-relativistic particle [14]. 

4. Factorizations 

In this section we discuss factorizations of the shift operators D ( * w )  and D ’ ( i w ) .  
These factorizations are useful in applications of the shift operators and in establishing 
the relationship with the factorization method for constructing shift operators p15]. 

The vector operators D(k-0)  can be factorized into a product of a vector operator 
and a scalar operator, and this factorization can be performed in two different ways. 
The first such factorization is , 

D ( + w )  = (2m0w)-”’UR(*w) (4.1) 

U = 3 x L+ i3( u. L)  (4.2) 

R ( w ) =  -ip,-r-’u.L+m,wr. (4.3) 

p r =  r-‘(r.p-ifi). (4.4) 

where 

and 

Here pr  is the usual radial momentum operator 

It is Hermitian with respect to Injmq) (see section 5 )  and it satisfies the commutation 
relation 

Thus p, is the canonical conjugate of r. 
The second factorization is 

D ( + w )  = -i(2m,w)-”2VP(+w) 

where 

V =i x L+ ip^(u.L) 

(4.5) 

and 

P(w) = im,,wr,, - m,wp-’u. L+ p. (4.8) 

Here 

rp = p - ’ ( p . r + i h )  (4.9) 

is the canonical conjugate of p ;  it is Hermitian with respect to Injmq) (see section 5) 
and it satisfies 

(4.10) 
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The factorizations of the adjoints D ' ( * w )  are 

D ' ( f w )  = ( 2 m o w ) ~ ' / * R ' ( + w ) U t  

= i ( 2 m , w ) - 1 / 2 ~ ' ( + w )  v', 
The vector operators U and V can also he expressed as 

U = U ' i ( U  x L) 

(4.11) 

(4.12) 

(4.13) 

and 

v =  P j q U  XL). (4.14) 

Thus 

U +  = (U x L)u. i 

v + = ( u x L ) u . f i ,  

and 

(4.15) 

(4.16) 

The operators R, P, U, and V factorize functions of the commuting operators Z, 

R + ( + ~ ) R ( + ~ )  =2m,(%*fw 7 WPL) (4.17) 

U: uo = (U x L);  = L 2 - j : + $  (4.18) 

U .  L, L2, and j,. For example, 

(U*d'U*, = [ ( ~ X L ) * , l ' ( ~ x L ) * ,  

= ( U .  L+.?z)2-$ (4.19) 

where in the last two calculations we have used (4.13). Similar results apply for P 
and V. 

The effect of R ( w )  on Injmq) is the same as that of (4.3) with u . L  replaced by its 
eigenvalues, that is, of 

R j ( w )  = -ip, + [ 1 f v( j +f)]r- '  + mowr (4.20) 

where the upper (lower) sign applies if 5; acts on I n j m ~ ) ~  ( I n j m ~ ) ~ ) .  In the coordinate 
representation 

p, = -i( :+:) (4.21) 

and R j ( w )  are first-order differential operators. These differential operators are shift 
operators for the quantum numbers N and I in the radial coordinate-space wavefunc- 
tions FNI and G,, in (5.4); they are the shift operators obtained by applying the 
factorization method [15] to the differential form of X (see (4.17)). Similarly, in the 
coordinate representation one obtains first-order differential operators from U (see 
(4.2)); these are shift operators for j ,  m, and I in the spinor spherical harmonics V;,,, 
in (5.4). 

Similar remarks apply to P ( w )  and V. In the momentum representation 

(4.22) 

and thus from P and V one obtains first-order differential operators that are shift 
operators for the momentum-space wavefunctions. 
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By replacing %'with its eigenvalues in the energy shift operators (3.29) one obtains 
operators that are linear in p .  The latter operators can also be derived by the factorization 
method [ 5 ] ,  and in the coordinate representation they are first-order differential shift 
operators for N in the radial coordinate-space wavefunctions FNI and GN, in (5.4). 
Similarly, from (3.30) one obtains shift operators for the radial momentum-space 
wavefunctions. 

5. Matrix elements, phase factors and wavefunctions 

The matrix elements of r can be written down using (3.14), (3.15), (3.17), and (3.18). 
The results are given in table 1.  By repeated use of these results one can evaluate the 
matrix elements of x " ~ y " 2 z " ~  where n; are non-negative integers. 

Table 1.  The non-zero matrix elements o f  r. In there formulae Injmq), and Injmq), are 
the elements I+) and Ix), respectively, in (2.15). 

The shift operations in section 3 contain the twelve phase factors B;(njm) and 
+:(njm) .  We now deduce relationships between these phase factors. From (3.27) and 
(3.28) we see that the choice of q for the phase factors in (3.30) and (3.31) requires 

(5.1) 

We can transform Injmq)u into In * 1,  j + q, m + p, q + q)L  in two different ways, namely, 
by applying D,(*to) and then (2.16), or by applying (2.16) and then D:(*o). 
Comparing the results we find 

(5.2) 

[e: (n  *2:j7 m f j * e : ( n j m )  = q. 

[+',(n * I ,  j +  7, m + p ) ] *  = - e ; ( n j m ) .  

According to (5.1) and (5 .2 ) ,  only three of the twelve phase factors can be chosen 
independently. For example, if we choose 

e; = -qi 81, = i i  (5.3) 

then (5.1) and (5.2) yield 8;=-i, 8 i , = * q i ,  & = - i ,  4:1= Fqi ,  &=-qi ,  and 
=Ti .  

With the choice (5.3) the representative of the Dirac ket (2.15) in the coordinate 
representation is, for j = /if, 

(5.4) 
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Here 

FNI( r )  = [ :( 1 +:)I " 2 C ~ ~ R ~ ~  

GN,(r )  = (sign E )  

where 

RNI = , F , ( - N ;  I++; m o o r 2 ) ( m o o r 2 ) r / 2  exp(-fm,,or*) (5.7) 

1 ' = I - v ,  N'=N-f ( l -q ) ,  N is the radial quantum number (see (3.33) and (3.34)), 
and E is given by (2.35) and (3.33). The angular functions in (5.4) are the spinor 
spherical harmonics 

(5 .9 )  

where Y,, is a spherical harmonic defined as in [16 ] .  In  the above we have supposed 
I is a non-negative integert. It is elementary to show that the radial momentum operator 
(4.4) is Hermitian with respect to the wavefunctions (5.4). 

If in (5.4)-(5.9) we make the substitutions r + ( m o w ) - ' p ,  ;+$, and in  (5.8) we 
replace (mow)"* with$ (m00)-3'2(-7i)r, we obtain the representative of the Dirac ket 
(2.15) in the momentum representation. The radial operator (4.9) is Hermitian with 
respect to these momentum-space wavefunctions. 
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